In our last series, we looked at taking a business problem or need and turning into a piece of automated code. We started out by breaking the problem down into smaller pieces, we then put together a piece of sortamation to demonstrate the overall solution, and then made it more modular and added some error handling.

In this series, we’re going to extend upon this and integrate our automation into an orchestration framework. This approach will apply to any orchestration framework, but we’ll use System Center Orchestrator 2016 in our examples.

Why Orchestration?

Primarily for delegation of tasks. We may have written a script that we can run to perform some mundane task, but for us to be able to successfully scale, we need to start putting some of these tasks into the hands of others.

As a dependency for delegation, we also want to use automation and orchestration as a way to guarantee us consistent results and general damage prevention. Sure, we could just allow everyone access to SCVMM or vCenter to manage their virtual machines, but that’s a recipe for disaster. Orchestration gives us a way to safely grant controlled access to limited sets of functionality to make other groups or teams more self-sufficient.

The Process

Much like in our earlier automation series, we want to start by defining a business problem and breaking it down to smaller tasks from there. We want to extend this too to include the safe delegation of this task and this will include thinking carefully about input we’ll accept from the user, information we’ll give back to the user, and what kind of diagnostic information we’ll need to collect so that if something goes wrong, we can take a look later.

The fictitious, but relevant, business problem that we’re going to solve in this series is a common DevOps problem:

Developers want to be able to test their code against real, live production data to ensure realistic test results.

The old approach would be to have someone dump a copy of the production application database and restore the dump to each of the developers’ own database instances. This is expensive in time and capacity and can adversely impact performance. It’s also error-prone.

Instead, we’ll look at making use of Tintri’s SyncVM technology to use space-efficient clones to be able to nearly-instantly make production data available to all developers. We’ll do this with some PowerShell and a runbook in System Center Orchestrator.

We can then either schedule the runbook to be executed nightly, or we can make the runbook available to the helpdesk folks, who can safely execute the runbook from the Orchestrator Web Console. [Later, we’ll look at another series that shows us how to make this available to the developers themselves — probably through a Service Manager self-service portal — but let’s not get too far ahead of ourselves]

Core Functionality

Our production VM and developer VMs all have three virtual disks:

  1. A system drive that contains the operating system, any tools or applications that the developer needs, and the application code either in production or in development.
  2. A disk to contain database transaction logs.
  3. A disk to contain database data file logs.

In our workflow, we’ll want to use SyncVM to take vDisks #2 and #3 from a snapshot of the production VM, and attach them to the corresponding disk slots on the developer’s VM. We want this process to not touch vDisk #1, which contains the developer’s code and development tools.

Inputs

For us to use SyncVM (as we saw previously), we need to pass in some information to the Tintri Automation Toolkit about what to sync. Looking at previous similar code, we probably need to know the following:

  • The Tintri VMstore to connect to.
  • The production VM and the snapshot of it that we wish to sync
  • The set of disks to sync
  • The destination developer VM

In order to limit potential accidents, we probably want to limit how much of this comes from the person we’re delegating this to. In our example, we’ll assume a single VMstore and a single known production VM. We’ve also established earlier that there is a consistent and common pattern for the sets of disks to sync (always vDisk #2 and #3). The only parameter where there should be any user input is the destination VM. The rest can all be handled consistently and reliably within our automation.

Output

After this has been executed, we’ll need to let the user know if it succeeded or failed, along with any helpful information they’ll need. We’ll also want to track a lot of detailed information about our automation so that if an issue arises, we have some hope of resolving it.

Summary

So far, we have again defined a business need or business problem (synchronisation of production data to developer VMs), defined the set of inputs we’ll need and where those will come from, and we’ve defined the outputs.

In the next installment, we’ll start to get our hands dirty with System Center Orchestrator, followed by PowerShell and the Tintri Automation Toolkit for PowerShell.

[Orchestra image by Sean MacEntee and used unmodified under CC2.0]

Advertisements

7 thoughts on “Orchestration For Enterprise Cloud

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s